
When Columbia University founded the Center for Multiscale Analysis of Genomic and Cellular Networks (MAGNet) in 2005, one of its goals was to integrate the methods of structural biology with those of systems biology. Considering protein structure within the context of computational models of cellular networks, researchers hoped, would not only improve the predictive value of their models by giving another layer of evidence, but also lead to new types of predictions that could not be made using other methods.
In a new paper published in Nature magazine, Barry Honig, Andrea Califano, and other members of the Columbia Initiative in Systems Biology, including first authors Qiangfeng Cliff Zhang and Donald Petrey, report that this goal has now been realized. For the first time, the researchers have shown that information about protein structure can be used to make predictions about protein-protein interactions on a genome-wide scale. Their approach capitalizes on innovative techniques in computational structural biology that the Honig lab has developed over the last 15 years, culminating in the development of a new algorithm called Predicting Protein-Protein Interactions (PrePPI). In this interview, Honig describes the evolution of this new approach, and what it could mean for the future of systems biology.